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Episodes of extreme heat are increasing globally, and dry land surface states have

been implicated as an amplifying factor in several recent heat waves. Metrics used

to quantify land-heat coupling in the current climate, relating sensible heat fluxes

to near-surface air temperature, are applied tomultimodel simulations of the past,

present, and future climate to investigate the evolving role of land–atmosphere

feedbacks in cases of extreme heat. Two related metrics are used: one that

describes the climatological state of land-heat coupling and one that gives an

episodic estimate of land feedbacks, here defined as themetric’s value at the 90th

percentile of monthly mean temperatures. To provide robust statistics, seasonal

multimodel medians are calculated, with the significance of changes determined

by the degree of model consensus on the sign of the change. The climatological

land-heat coupling mirrors other metrics of land–atmosphere interaction,

peaking in transition regions between arid and humid climates. Changes from

preindustrial to recent historical conditions are dominated by decreased land

surface controls on extreme heat, mainly over the broad areas that have

experienced expanded or intensified agriculture over the last 150 years. Future

projections for increased atmospheric CO2 concentrations show a waning of

areas of weakened land-heat feedbacks, while areas of increasing feedbacks

expand over monsoon regions and much of the midlatitudes. The episodic

land-heat metric is based on anomalies, which creates a quandary: how

should anomalies be defined in a nonstationary climate? When the episodic

coupling is defined relative to the means and variances for each period, a

broadly similar evolution to the climatological metric is found, with historically

dominant decreases giving way to widespread moderate increases in future

climate scenarios. Basing all statistics on preindustrial norms results in huge

increases in the coupling metric, showing its sensitivity to the definition of

anomalies. When the metric is reformulated to isolate the impact of changing

land and temperature variability, the tropics and Western Europe emerge as

regions with enhanced land feedbacks on heatwaves, while desert areas and

much of the remainder of the midlatitudes show reduced land-heat coupling.
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1 Introduction

Episodes of extreme heat are a growing concern as recent

heat waves continue to display unusual intensity across more

locations (Albergel et al., 2019; Petch et al., 2020; Yiou et al., 2020;

Neal et al., 2022). There is growing evidence of the key role that

land surface conditions play in exacerbating and prolonging

heatwaves (Fischer et al., 2007; Hauser et al., 2016; Hirsch

et al., 2019; Schumacher et al., 2019; Wehrli et al., 2020;

Benson and Dirmeyer, 2021; Dirmeyer et al., 2021). Extreme

heatwave periods with distinct soil moisture deficit signatures

and climatological anomalies are often characterized by

reductions in terrestrial evaporative cooling and increasing air

temperature in parallel with elevated soil moisture deficits and

atmospheric demand for water. Such perturbations in soil

moisture contribute to dramatic variability in

land–atmosphere interactions and seasonality disruption,

thereby affecting surface heat and moisture fluxes and

atmospheric conditions. Thus, they are also critically linked to

hydrologic extremes (Zscheischler et al., 2018; Bevacqua et al.,

2022; O et al., 2022). These relationships present an opportunity

to interpret the mechanisms driving heatwave patterns in

changing climate regimes (Seneviratne et al., 2010; Lau and

Nath, 2014; Ukkola et al., 2018; Miralles et al., 2019).

Land–atmosphere interactions and their associated feedback

sensitivities are acknowledged as vital components of the Earth

system that affect extremes such as droughts and heatwaves

(Santanello et al., 2018). Miralles et al. (2012) developed a

relatively simple and straightforward pair of metrics to

quantify the role of land surface anomalies in extreme heat,

ostensibly in the form of soil moisture, but expressed through

variations in surface heat fluxes between land and atmosphere.

They put forward two metrics, one to quantify the climatology of

land-heat feedbacks in any location and the other to identify

whether specific heatwave episodes are augmented by

land–atmosphere feedbacks. Their study applied the metrics to

recent climate data from observationally based sources.

In this study, we adapt the metrics of Miralles et al. (2012) to

apply to a host of climate model simulations of past, recent, and

future climates. Given the constraints of those metrics, we ask

several questions. What patterns exist for extreme heat anomalies

under preindustrial conditions? How has heatwave intensity

changed since the preindustrial period? How might heatwave

susceptibility change with a doubling and/or quadrupling of

anthropogenic-induced greenhouse gas emissions (CO2)?

What conclusions may be drawn from the spatiotemporal

variability of heatwave anomalies with the introduction of

warming relative to preindustrial conditions? A major point

that emerges from this study is the quandary of finding

meaningful definitions of extreme heat in a warming climate

and the role of the land surface therein. Section 2 describes the

data sets, the metrics, and how they are applied to climate model

output. Results are presented in Section 3, first for the

climatological metric and then for the episodic one applied to

the 90th percentile of extreme heat in climate model simulations.

The conclusion is presented in Section 4.

2 Materials and methods

To quantify land surface feedback in the manner of Miralles

et al. (2012), particularly their episodic coupling metric π

described in the following, daily data are customarily used. In

this study, temporal sampling was upscaled to be consistent with

the available multimodel global data. We utilize the monthly

mean model output from the Coupled Model Intercomparison

Project Phase 6 (CMIP6; Eyring et al., 2016). We use a single

ensemble member from each of the 30 models (see

Supplementary Table S1 for a complete list), as model

ensemble sizes vary greatly; choosing ensemble means or

including all ensemble members would give unequal treatment

to different models. The advantage of examining a large

multimodel ensemble is the improved skill over single-model

simulations and forecasts (Krishnamurti et al., 1999; Palmer

et al., 2004; Tebaldi and Knutti, 2007), but ensembles of

opportunity like CMIP6 do not inherently optimize this

improvement, and harvesting potential skill beyond what is

attainable by an equal weighting of each model provides

many challenges (Knutti et al., 2010; Leduc et al., 2016;

Abramowitz et al., 2019). The simple approach used here is

that multimodel medians are calculated among all models, which

minimizes the impact from unreasonable outliers that can skew

the multimodel mean (Tebaldi and Knutti, 2007; Samaniego

et al., 2018; Schwingshackl et al., 2018; Chen and Dirmeyer,

2019) and may offset somewhat the lack of spread among models

with similar ancestry.

TABLE 1 CMIP6 experiments and the periods utilized for each
experiment.

Experiment Period Description

piControl All yearsa Preindustrial control; no external forcings

Historical Last 50 years Late 20th century/early 21st century

1pctCO2 Years 21–70 Up to a doubling of CO2

1pctCO2 Years 91–140 Up to a quadrupling of CO2

aSee Supplementary Table 1 for the number of years for each model.
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The analysis is performed on three CMIP6 Diagnostic,

Evaluation, and Characterization of Klima (DECK)

simulations, which are the most numerous: 1) preindustrial

control simulations (piControl), 2) historical simulations, and

3) emission-driven simulations, that is, 1% per year CO2 increase

(1pctCO2). Table 1 lists the experiments and periods used.

piControl simulations provide the baseline climatology for all

comparisons. Historical simulations include multiple climate-

forcing factors beyond CO2, including time-varying land cover

and aerosols. 1pctCO2 runs are idealized simulations in which

atmospheric CO2 is increased by 1% per year, beginning from

piControl conditions, with no other changes. The 1pctCO2 runs

were chosen for future simulations as they are available from

many models and represent transience in the major climate

forcing. The comparison between these historical and

emission-forcing experiments to the piControl baseline

provides an indication of how land surface feedbacks may

have changed and contributed to extreme heatwave patterns

since preindustrial conditions. For the 1pctCO2 simulation, two

periods are considered from each model: 1) years 21–70, during

which atmospheric CO2 concentrations double from ~23% above

preindustrial levels and 2) years 91–140 wherein atmospheric

CO2 concentrations ultimately quadruple beyond preindustrial

levels.

The strength of land surface coupling in relation to extreme

heat is quantified using the soil moisture and near-surface

temperature coupling metric described by Miralles et al. (2012):

Π � r(H,T) − r(Hp, T) (1)

where r is Pearson’s correlation coefficient, H is the monthly

surface sensible heat flux, T is the monthly-averaged near-surface

air temperature at 2 m above the surface, andHp is defined as the

potential sensible heat flux given by:

Hp � H + L − λEp (2)

where L is the latent heat flux, λ is the latent heat of vaporization,

and Ep is potential evapotranspiration based on the

Priestley–Taylor formulation (Priestley and Taylor, 1972)

expressed as:

λEp � αm(H + L

m + γ
) (3)

whereby the sum of model sensible and latent heat represents net

radiation, the P–T coefficient is α � 1.26, m is the slope of

saturation vapor pressure with temperature calculated from

the monthly mean near-surface air temperature, and γ is the

psychrometric constant. We found differences in patterns ofΠ to

be largely indiscernible if Spearman’s rank correlation coefficient

is used instead of Pearson’s correlation coefficient, although the

magnitudes are usually slightly smaller.

It should be noted that despite the title of the Miralles et al.

(2012) article, the role of soil moisture is only inferred as a

potential control onH andHp. In fact, the atmosphere does not

“feel” soil moisture directly but instead feels the fluxes from the

land surface that may be modulated by soil moisture. Given the

variations among soil moisture parameterizations and reporting

among CMIP6 models, it makes sense to focus on the more

consistently reported heat fluxes as a linkage to land state impacts

on climate.

In addition to the climatological metric (Π), Miralles et al.

(2012) defined and applied a land-heat metric at a specific time t:

π(t) � ⎛⎜⎝H(t) − �H

σH
− Hp(t) −Hp

σHp

⎞⎟⎠(T(t) − �T

σT
) (4)

The overbars indicate a temporal mean (in this case, a

climatological mean for each month of the year), while σ is

the standard deviation over time (with the seasonal cycle

removed). This π metric identifies heat wave anomalies with a

terrestrial driver component. The terrestrial component is

characterized by the connection between sensible heat flux

(H) and in particular potential sensible heat flux (Hp), the
latter of which is small when potential evapotranspiration is

large, thus contributing to large positive values of π.

Furthermore, temperature anomalies act as an amplification

factor.

While the climatological and land-heat metrics in Miralles

et al. (2012) were derived using daily data, monthly means were

extracted from CMIP6 climate model simulations in this study.

The main impact of this approach is that a different timescale of

extreme heat is sampled to compare temperature anomalies and

associated land feedbacks over monthly periods; in this case,

variations shorter than 1 month are not considered.

Consequently, due to the highly nonlinear nature of moist

thermodynamics, these calculations performed on monthly

mean data will not be identical to computing monthly means

based on daily observations. However, to investigate climate

change, it is important to apply consistent formulation to all

models in all cases, such that taking differences between

experiments may ameliorate any systematic biases introduced

by the application of these metrics to longer time scales.

The extreme heat coupling metrics are calculated separately

for each month based on the respective experimental period

wherein monthly values are seasonally averaged. For each model,

metrics are calculated on its native grid, and then data from each

model are regridded with nearest neighbor interpolation to a

common, high-resolution global grid (2560 × 1280, roughly

0.14° × 0.14° grid cells) to preserve the spatial structure

contribution from each model (Dirmeyer et al., 2013a;

Dirmeyer et al., 2013b and several subsequent studies).

Nearest neighbor interpolation, combined with the use of each

model’s land–sea mask, removes the risk of introducing data

from adjacent water-covered grid cells. Effectively, for the central

latitude and longitude of each grid cell of the 2560 × 1280 grid, we

find the value in each model’s unique grid cell that contains that
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coordinate, combine the data from all models for that location,

and take the median. Only ice-free land grid cells common to at

least 90% of the models on the high-resolution grid are populated

with the data.

To compute the monthly mean metrics, surface sensible heat

flux information is extracted directly from 30 CMIP6 models,

whereas in Miralles et al. (2012), net radiation and surface latent

heat flux were used to estimate surface sensible heat flux.

However, most of these models do not provide net radiation

or ground heat flux data; thus, surface potential sensible heat flux

is estimated with the application of the P–T equation. Despite the

integration of CMIP-derived monthly mean data as opposed to

daily datasets, this approach does have a successful precedent for

climate change investigations (e.g., Dirmeyer et al., 2013a;

Dirmeyer et al., 2013b). Finally, monthly means are averaged

to produce seasonal means. Field significance is tested using the

approach outlined by Dirmeyer et al. (2013a) and Dirmeyer et al.

(2013b).

We calculate for each model the 90th percentile value of π for

each month, take the average across the 3 months in each season,

and then select the median value among models as a

representation of this land-heatwave coupling metric.

However, each of the terms comprising Eq. 4 is sensitive to

how means and variances are defined, and thus the anomalies

that are at the heart of these heat metrics and many climate

statistics. What is the proper climatology to use in a changing

climate? Anomalies relative to the piControl mean emphasize the

climate change signal, violating the implied assumption of

climate stationarity in the formulation of Eq. 4. Anomalies

relative to each simulation’s mean tend to exaggerate

anomalies in early and late years in simulations with a trend,

implying a false normality around the middle of the period.

Alternatively, anomalies relative to a detrended time series (e.g.,

running mean) emphasize the interannual variations over the

climate trend. Each distinction provides a fundamentally

different meaning than simply using piControl as the baseline

climatology for all statistics.

Defining the standard deviations of temperature and the two

sensible heating variables also presents choices, and these choices

depend directly on how the means are defined. For example, if σ

is not defined relative to the same mean as the anomalies, this

value will be inconsistent. However, such an approach may still

be useful when examining the climatology of variability

independently from the external forcings; after detrending, a

growing σ over time suggests increased variability in a warming

climate, which is conducive to stronger extremes and greater

societal impacts.

For comparisons, the 90th percentile value of π is computed

for each model at each grid cell for each month, representative of

subseasonal periods of extreme heat. For the piControl baseline

simulation, all available data are used (see Supplementary Table

S1). For the other experiments, a trailing 30-year mean

(unweighted–for year t, the climatology is defined as the

average of years t − 30 through t − 1) is applied to define a

moving climatology consistent with the period commonly

used (Arguez and Vose, 2011). Moreover, this technique was

compared to a linear detrending approach over a 50-year period,

and the results are very similar. However, in real time, under a

changing climate, future data are not available; therefore, the

practicable trailing 30-year mean is used here. During the first

10 years of the period, encompassing years 21–70 of the 1pctCO2

experiment, the trailing 30-year period extends before the

initialization of the experiment. Under these circumstances,

the last decade of the piControl simulation from the same

model is used as a source of data to complete the 30-year

mean calculations.

Finally, the significance of change is defined by the level of

agreement among models, inasmuch as this can be considered an

indicator of certainty (Pirtle et al., 2010; Parker, 2013; Brunner

et al., 2020). Specifically, under the null hypothesis that each

model will return a random sign of the difference between two

cases with equal probability, the level of agreement among

models is significant at the 99% confidence level if 22 or more

models have the same sign of the change (p = 0.008). Such a

stringent confidence level somewhat ameliorates the degree of

agreement that may arise because we have included in our 30-

model ensemble related models from within several modeling

centers (see Supplementary Table S1). Furthermore, grid cells are

masked white in difference plots when this confidence level is not

met. As we are examining metrics related to extreme heat, we also

do not consider grid cells at any location where the seasonal

mean temperature in the warmest case is at or below 0°C.

3 Results

3.1 Climatological coupling

Figure 1 shows the multimodel median value of the

climatological soil moisture–temperature coupling metric Π

for each season from the piControl simulations. First, the

seasonal mean is calculated for each model, and then the

multimodel median is estimated for the 30 models. The JJA

and DJF panels can be compared with Figures 1A,B fromMiralles

et al. (2012), which were calculated with observationally

constrained data from ERA-Interim (Dee et al., 2011) and

GLEAM (Martens et al., 2017). Supplementary Figure S1

shows the results from the historical simulations, which are

very similar but more temporally consistent with Figures 1A,B

from Miralles et al. (2012). The strongest coupling between

surface heat fluxes, presumably controlled by soil moisture

and near-surface air temperature, tends to be highest in

warm, semiarid regions, including regions on the fringes of

monsoons. The index Π is around zero in locations where

surface evaporation is substantially energy limited, where

extreme heat is rare, and in hot dry regions where there is no
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evaporation. As noted by Miralles et al. (2012), areas exhibiting

large Π values correspond well with multimodel derived hot

spots of soil moisture–temperature coupling derived by other

techniques (Koster et al., 2006; Dirmeyer, 2011). The agreement

between Π calculated from the CMIP6 models and the original

Miralles et al. (2012) results is the greatest in the Southern

Hemisphere during DJF, particularly over Africa and

Australia, although the CMIP6 models also show stronger

extreme heat coupling over Australia during JJA than does

Miralles et al. (2012).

When comparing the coupling metric Π from the late

historical period relative to the piControl baseline (Figure 2),

the median change is dominated by decreased soil

moisture–temperature coupling across every season, with 99%

confidence in the 30-model level of consensus. These areas of

change largely correspond to regions of land cover change during

the same interval, namely, the expansion of agriculture (North

America, eastern Europe into central Asia, Northern China, and

Northeast Brazil). Such differential effects of vegetation on

extreme heat demonstrate the importance of biophysical

indicators (Teuling et al., 2010). While some of the

widespread areas of reduction over Africa appear to

correspond to agricultural expansion, it is not indicated to be

as widespread in the Hurtt et al. (2020) dataset as appears in

Figure 2. Moreover, areas with indications of increasing Π are

small, scattered, and not greater than random chance in terms of

field significance. Additionally, nearly one-third of the global

land area displays increase in Π across each season; however,

when screening for significant model consensus, almost none of

these areas pass the testing criterion.

As climate would be projected to approach the doubled CO2

level with no other changes from piControl conditions (Figure 3),

decreases in Π again dominate in every season. Globally, two

regions show most of this negative trend, one in Africa (mainly

East Africa) and one in India. Both CMIP5 and CMIP6 models

project wetter conditions over these regions (Zhao and Dai, 2015;

Wang et al., 2020; Dosio et al., 2021; Zhao and Dai, 2022), and

CMIP5 models had indicated reduced sensible heat flux over

these areas (Dirmeyer et al., 2013b). A few contiguous areas show

consensus seasonal increases in Π: the Western Mediterranean,

Northern Indus and Ganges basins, the Southern Great Plains

and northern Mexico during boreal winter, the South-central

U.S., parts of Europe and central Australia during MAM, much

of Europe and southern Arabia in SON, and just scattered and

FIGURE 1
Multimodel median values of soil moisture–temperature coupling (Π; dimensionless) for each season from preindustrial control (piControl)
simulations from CMIP6. Values are calculated over ice-free land areas only.
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diffuse locations during JJA. Note that there is no land use change

specified in this experiment, but most of these models predict

vegetation phenology and about half include dynamic vegetation

parameterizations.

Shifting to the quadrupling CO2 scenario, the strongest and

most widespread signals emerge. Areas of decreased soil

moisture–temperature coupling in Africa and India persist

and are joined by a large area of eastern South America

during the JJA and SON seasons (Figure 4). However, there is

a robust appearance of increased soil moisture control on

extreme heat over many parts of the world across all seasons,

matching or exceeding the area of decreased coupling. Beginning

with boreal spring (MAM), a band of large consensus increases

exists in Π across much of the Mediterranean region from Spain

to Turkey. Additionally, many broad areas of smaller consensus

increases are indicated, spanning across central Asia and North

America, from the central Great Plains westward across the

central Rocky Mountains. Large areas over the western Sahara

exhibit small consensus increases in Π. In the tropics, large

fractions of Indonesia, the Amazon, and Congo basins show

increases, while Southern Hemisphere subtropics across both

continents display a scattering of increased Π distribution.

Moving into boreal summer and austral winter, widespread

areas of strong increases inΠ emerge. Over North America, there

is a band over the entire Northern portion of the midlatitude

agricultural belt, as well as portions of the Eastern U.S. and much

of the North American monsoon region. Over Eurasia, there is a

similar band of large changes stretching from Southern France to

the Asian Taiga in Northern Kazakhstan across to Mongolia and

northward into Finland. The small magnitude consensus

increases over the desert shift to the Eastern Sahara, most of

Arabia, and into Southern Iran. There are also small magnitude

consensus increases over parts of Southeast Asia and China. In

the tropics, there are large increases inΠ over the western parts of

the Congo and Amazon Basins, the latter extending Northward

into the Guianas. Areas in the Southern Hemisphere with

Mediterranean climates (South Africa, Western Australia, and

Chile) also have large increases, while Antarctica was masked

from this investigation. Concomitantly, most of the Arctic

displays little visible variability among coupling regimes across

experiments, baseline climatology, and external forcing, that is,

little variability is indicated based on the significance criterion

(i.e., no positive statistical significance in soil moisture–heat

coupling.)

FIGURE 2
Multimodelmedian change inΠ (dimensionless) for each season from piControl to the last 50 years of the historical simulations in CMIP6. Areas
are masked where the agreement among models on the sign of the change is below the 99% confidence level, or where the median of seasonal
mean near-surface air temperature is below 0°C. Histograms show the probability distribution of significant changes as a fraction of the total land
area.
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In boreal fall and austral spring, broad areas of large increases

persist in the Americas: over the central Rockies, Northern Great

Plains, Northern Mexico, western Amazon, and Venezuela.

Nearly all of Europe south of 55°N shows a consensus

increase in Π, including the Caucasus region. There is also a

band across Africa and Arabia north of 15°N and over

southeastern Australia and South Africa. This season shows

the greatest areal coverage of significant changes in the Arctic,

mostly small decreases in land–heat coupling strength.

During boreal winter and austral summer (DJF), the most

prominent feature is the broad area of a strong increase inΠ over

most of Mexico and the southwestern U.S. A weaker but larger

area is seen over much of South America between the equator

and 20°S east of the Andes. In the Eastern Hemisphere, regions of

consensus increase in Π are patchy, with the areas of strongest

increase over the Maghreb, the Levant, Tigris Basin, and upper

Indus and Ganges basins. A sizeable fraction of southern Africa

also shows consensus changes.

When compared to the median values of Π from the

piControl simulations, most of the consensus changes outside

the low latitudes are poleward extensions of existing regions of

strong soil moisture–temperature coupling, consistent with

previous findings suggesting a poleward shift in

land–atmosphere coupling regimes (Dirmeyer et al., 2013a;

Dirmeyer et al., 2013b), for example, in the JJA panel of

Figure 4, north of 30°N, changes where the piControl values

of Π are between 0.2 and 0.5 and average between + 0.02 and +

0.03, while above and below that range of Π, the mean changes

are smaller. At low latitudes, areas of pronounced increases in Π

are also mainly an extension of higher values into regions that

had low values in the piControl simulations and not an

amplification of soil moisture–temperature coupling in a place

where it is already strong.

3.2 Episodic coupling

Miralles et al. (2012) developed an instantaneous land–heat

coupling metric (π) that has been applied here to the

CMIP6 model simulations at monthly timescales. The π

metric indicates the degree to which a specific episode of

extreme heat is driven by a feedback chain from soil moisture

and surface fluxes to air temperature. As demonstrated by Eq. 4,

π is based on differences and products of normalized anomalies,

that is, standard normal deviates (Koster et al., 2009). There

exists a quandary for statistics of this type when applied in a

FIGURE 3
As in Figure 2 for the median change in Π (dimensionless) from piControl to years 21–70 of the 1pctCO2 simulations (leading up to a doubling
of CO2).
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nonstationary climate, as notions of “anomaly” and “variance”

are dependent on the definition of the mean, a definition

representative of normal conditions. What means should be

used? Should one base normality on the conditions before

anthropogenic climate change began, or should it be defined

more proximate to the point in time under consideration?

Conventionally, climate normals are defined using a trailing

30-year (or in common practice, a complete prior 3 decade)

mean (Arguez and Vose, 2011), but it has been recognized that

this practice is becoming inappropriate in a changing climate as

the basis of defining anomalies for predicted events (e.g., Livezey

et al., 2007; Milly et al., 2008). One alternative is to fit a

regression, linear or otherwise, to data to create a time-

varying normal. However, we should first ask the question of

the purpose of a metric like π. It was conceived to be an indicator

of the strength of a physical process, namely, the contribution of

the land surface to the severity of heatwaves, and that is a

quantity that is worthwhile to estimate for past and future as

well as present climate conditions. We examine here if it is

possible to use π for this purpose, particularly how the definitions

of the means (�T, �H, Hp) used to calculate the anomalies

(T′, H′, H′
p) and the mean used as a baseline to calculate the

standard deviations (σT, σH, σHp) affect π and its interpretation.

Figure 5 shows the result for the preindustrial simulations

(piControl)—it is to be noted that the scale for π is different

compared to that for Π. Large values suggest regions where there

is a stronger land surface feedback on extreme heat. In austral

summer (DJF), Northern Australia, inland Southern Africa, and

South America, and the Amazon delta have some of the highest

values. In MAM, there is a northward shift, with the strongest

feedbacks indicated over a smaller portion of Northern Australia,

Southeast Asia, from the Guinea coast of Africa eastward to the

Ethiopian Highlands, and small areas on the continents around

the Caribbean Sea and the Gulf of Mexico. By JJA, large

contiguous areas of large π emerge over much of southern

North America and the Sahel region of Africa, along with

scattered smaller areas, such as over Northwestern India.

During SON, much of tropical and subtropical South America

shows very high values, as well as several areas scattered across

East Africa.

Regionally, there are some clear patterns of seasonality.

North America and much of midlatitude Eurasia show a clear

oscillation between summer and winter. In East Asia, there is a

South-to-North progression of high π values into summer but

also an outbreak from a hotspot around Beijing and the Gobi

Desert in MAM that expands across the Eurasian Steppes by JJA.

FIGURE 4
As in Figure 2 for the median change in Π (dimensionless) from piControl to years 91–140 of the 1pctCO2 simulations (leading up to a
quadrupling of CO2).
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FIGURE 5
Multimodel median of the 90th percentile values of monthly scale soil moisture–temperature coupling (π; dimensionless) for each season from
preindustrial control (piControl) simulations. Values are calculated over ice-free land areas only.

FIGURE 6
JJA multimodel median of differences in the 90th percentile values of π (dimensionless). The left map shows differences when π is calculated
from the last 50 years’ data from the historical simulations and π from piControl. The middle map shows the difference when means and standard
deviations from the piControl climatology are used to calculate π for the late historical period versus using all climate statistics from the historical
period. The right map shows the change from piControl to the late historical period when piControl climatology is used as the basis for
calculating π in both periods. Areas are masked where the agreement amongmodels on the sign of the change is below the 99% confidence level, or
where the median of seasonal mean near-surface air temperature is below 0°C. Histograms show the probability distribution of significant changes
as a fraction of the total land area.
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However, regions like Mexico and India appear to maintain

strong land surface feedbacks to heatwaves throughout the year,

as does most of sub-Saharan Africa. Nearly all land in the

Southern Hemisphere is covered in shades of red throughout

the year, as shown in Figure 5.

High values of π correspond quite well with the seasons and

locations of so-called hotspots of land–atmosphere coupling (e.g.,

Koster et al., 2004; Dirmeyer et al., 2009). Low values of π do not

indicate a lack of heat or heatwaves but rather a lack of land surface

contribution via concomitant soil drying. It is to be noted that the

large deserts of Africa and Asia in Figure 5 usually have low values

of the 90th percentile of π. Cool and/or moist regions also have low

values for the 90th percentile of π as they rarely, if ever, get into a

state of concurrent dry soils and prolonged extreme heat.

We can see the impact of our choice of baseline for the

definition of anomalies when we examine changes in the 90th

percentile of π from the preindustrial to recent historical times

(Figure 6 depicts JJA; other seasons are shown in Supplementary

Figure S2). When each period’s anomalies and standard deviations

for temperature, sensible heat, and potential sensible heat are used

for eachmodel, the left panel shows that the multimodel median of

the 90th percentile value of π shows a significant consensus change

over portions of the globe. Decreases correspond largely to areas of

land cover change: areas of agricultural expansion over the

Americas, Northeast China, India, the Sahel, and Australia, but

the correspondence between land use change and land-heat

coupling has not been explicitly quantified in this study as it has

been in others (e.g., Chen andDirmeyer, 2019; Chen andDirmeyer,

2020; Hu and Sun, 2022). Increases are largely confined to low

latitudes, corresponding to areas of tropical deforestation but also in

the subtropics of the Southern Hemisphere during austral summer

(Figure 2) and, curiously, much of the Sahara. The multimodel

median values of the time mean and standard deviations that are

part of the main terms in π (Eq. 4) are shown for all seasons in

Supplementary Figures S3, S4, respectively.

This pattern of change in the 90th percentile of π is driven by

several factors. Most areas experienced warming (Supplementary

Figure S5). There is an increase in the standard deviation of

temperature almost everywhere (Supplementary Figure S6),

which makes the denominator larger for the historical case.

Notable exceptions, according to the models, include areas

with large increases in cultivation: central North America, Far

East Asia, the upper Ganges and Indus valleys, and much of

Eastern Europe. The mean and standard deviation of sensible

FIGURE 7
Multimodel median of differences in the 90th percentile values of π (dimensionless) for the period of 1pctCO2 approaching quadrupled CO2

minus piControl for each season. Areas are masked where the agreement among models on the sign of the change is below the 99% confidence
level, or where the median of seasonal mean near-surface air temperature is below 0°C. Histograms show the probability distribution of significant
changes as a fraction of the total land area.

Frontiers in Environmental Science frontiersin.org10

Dirmeyer et al. 10.3389/fenvs.2022.949250

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2022.949250


heat flux drop over most of the same areas. The changes in

potential sensible heat closely mirror temperature changes over

theWestern Hemisphere but not in the Eastern Hemisphere. As a

global measure of the drivers of changes in π, we calculated

spatial correlations of its changes in each season (from Figure 6

andSupplementary Figure S2) with the changes in each time-

mean term in Eq. 4. Changes in σT explain 79% of the spatial

variance during MAM and JJA, 71% in SON, and 55% in DJF. σH
and σHp also explain around 50% of the variance on average and

as much as 62% in MAM (note that these terms are cross-

correlated; therefore, percentages for any season can sum tomore

than 100%). Changes in the means �T, �H, and Hp generally

account for less than 30% of the variance.

Returning to Figure 6, we see a very different picture when

the baseline for anomalies during the historical period is kept at

piControl levels and the piControl standard deviations for the

terms used to calculate π are also used (right panel). Nearly every

significant change is a substantial increase, suggesting stronger

land surface coupling to extreme heat events. The middle panel of

Figure 6 shows the difference that arises mainly from the

differing estimates of the 90th percentile of π during the

historical period between the two baselines.

Next, we examine the doubled and quadrupled CO2 periods

compared with piControl. Using a trailing 30-year mean as the basis

for climatology in the future projections, we see a pattern of changes

for the quadrupled CO2 case (Figure 7) that is very similar to but

skewed more strongly to positive differences and more significant

areal coverage than the doubled CO2 case (Supplementary Figure S7).

During all seasons, there are widespread consensus increases in the

90th percentile ofπ, the largest of which locally amounts to 20%–40%

increases over piControl coupling strengths. Areas of consistent

exception are around the Mediterranean and North Africa, as well

as South Africa, indicating weaker coupling of soil moisture to

extreme heat in most seasons. During boreal summer, the areas of

decreased π expand to their greatest area in several subtropical

regions and some hot midlatitude locations in the Northern

Hemisphere. The broad expanse of stronger land feedbacks to

heat across the entire Arctic as well as across much of the tropics

is striking. During SON, there are only a few areas of decrease in the

Southern Hemisphere. DJF shows Australia to be exempted from

increased soil moisture feedbacks on extreme heat, along with

Namibia, the Maghreb, and the Pampas.

Unsurprisingly, if the preindustrial norms are used as the basis

for calculating π in future climate scenarios, the values become

huge because the anomalies are huge. We have examined several

variants–one of the most instructive is to calculate anomalies for

future climate scenarios based on the trailing 30-year means in

those cases but to retain the standard deviations from piControl

FIGURE 8
As in Figure 7 but with future values of π (dimensionless) based on means and standard deviations from the piControl climatology.
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when normalizing the terms in π. This seems reasonable since

there is likely to be some degree of adjustment by populations and

migrating ecosystems to increasing temperatures, but changes in

variability may not be easily accommodated. Figure 8 shows the

difference in the 90th percentile of π for each season in this case

compared to the maps shown in Figure 7 (Supplementary Figure

S8 is the equivalent for the doubled CO2 case). When the three

factors in π are normalized by piControl standard deviations,

rather than future standard deviations, stronger land feedbacks on

extreme heat are indicated across the tropics and subtropics. The

area skews toward the summer hemisphere as seasons progress,

showing that the added impacts are mainly in monsoonal areas.

However, arid regions and seasons in the subtropics and tropics

experience less land feedback on heat in this formulation. Means

and standard deviations of temperature will increase globally in all

seasons in the future (Supplementary Figures S9–S12), but the

areas showing a reduction in the 90th percentile of π shown in

Figure 8 correspond with regions of decreased variability in

potential sensible heat flux (and thus potential evaporation),

while the areas of increase align well with areas of increased

sensible heat flux variability. Changes in σT again explain most

of the spatial variance, generally more than 80% for both future

scenarios. σH and σHp explain a comparable amount for

quadrupled CO2 as they did for the historical changes but

slightly less for doubled CO2. Changes in the mean terms

account for about a quarter of the spatial variance.

4 Discussion and conclusion

This study estimates past, present, and future heatwave

susceptibility based on surface temperature, surface sensible

heat flux, and surface latent heat flux as proposed by Miralles

et al. (2012). The impact of climate change on climatological

coupling via land–atmosphere temperature feedbacks has been

examined with the climatological metric (Π) from Miralles et al.

(2012). This metric considers differing correlations between near-

surface air temperature relative to potential and sensible heat flux,

the former equivalent to the difference between net radiation and

potential latent heat flux. Furthermore, this coupling can be

robustly investigated, as it is based on temporal correlations

that can well reflect changing relationships among physical

climate variables such as temperature and sensible heat. This is

more broadly true for correlation-based investigations of other

evolving biotic indicators and land–atmosphere feedbacks in a

changing climate (e.g., Notaro, 2008; Dirmeyer et al., 2013b; Berg

et al., 2015; Lorenz et al., 2015; Santanello et al., 2018;

Schwingshackl et al., 2018). However, the connection between

these variables may not be strictly linear but can change depending

on the role of soil moisture in modulating surface heat fluxes

(Benson and Dirmeyer, 2021; Dirmeyer et al., 2021). It remains to

be shown whether there is a better land-heat metric to use with

CMIP6 model data.

Under preindustrial conditions (piControl), seasonally

dependent hotspot regions of land–atmosphere coupling typically

located in transitional zones between wet and dry climates in many

other studies emerge oncemore during this analysis forΠ (Figure 1).

Among CMIP6models, historical land-use change (e.g., agriculture)

corresponds spatially to areas of reduced land surface (i.e., soil

moisture) controls on extreme heat (Figure 2). This relationship is

consistent with crops’ lack of regulation of their evapotranspiration

as they have been bred to produce ample fruit rather than to survive

extremes. Moreover, land surface models reflect these trade-off

features via increases in gross primary productivity, high stomatal

conductance, and vigorous carbon assimilation (De Kauwe et al.,

2015; Franks et al., 2018).

For the future climate scenarios (Figures 3, 4), coverage of

increased soil moisture–heat flux–temperature coupling

(i.e., positive values of Π) emerges as doubled atmospheric

CO2 is approached, while regions displaying a reduction in

land–atmosphere coupling early in the 1pctCO2 simulations

begin to recede over time during every season. As quadrupled

CO2 is approached, regions of increasing land-heat coupling

begin to dominate, particularly in monsoonal areas and across

much of the midlatitudes where areas of seasonally high values of

Π spread northward.

Consideration of the episodic land–atmosphere heat

coupling metric of Miralles et al. (2012), π, focuses on

changes of its 90th percentile value in each season, including

“cold” seasons that might not be considered as having heatwaves.

This is done for completeness, as arbitrarily excluding months is

difficult to justify. The low-temperature screening described at

the end of Section 2 is our attempt to remove severely energy-

limited situations from consideration. All seasons have been

considered because episodes of extreme heat are not only

intensifying (and projected to intensify further, cf. Perkins-

Kirkpatrick and Gibson, 2017) but are also spreading in many

places into seasons not historically associated with heatwaves

(Shafiei Shiva et al., 2019). Changes are shown globally for each

season, compared to the preindustrial baseline.

It is a much more nuanced problem to attribute the role of the

land surface in the proliferation of extreme events within a

changing climate as the very definition of “extreme” is by

nature relative and potentially changing. This is particularly

true when metrics are built with the assumption of a stationary

climate as opposed to a changing one (Milly et al., 2008; Trenberth

et al., 2014; Stevenson et al., 2022). The metric π falls into this

category (Figure 5), as it is based on the normalization of

anomalies with temporal standard deviations, each of which

can be defined from different baselines. Anomalies have been

defined based on a mean climate period, a trailing 30-year mean

climatology, and relative to piControl in the presence of changing

climate. Relative to piControl norms, 90th percentile indices of

monthly land–atmosphere coupling increase significantly over the

entire globe, especially for the most recent historical period

(Figure 6 and Supplementary Figure S2), and they can grow to
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dozens of times more than the values when contemporaneous

climate norms are used in the quadrupledCO2 period (not shown).

This throws into question the very meaning of such a metric.

Instead, two reasonable approaches are explored. When

contemporaneous climate means and standard deviations

(i.e., based on the trailing 30 years) are used to compare

different periods (Figure 7 and Supplementary Figure S7),

increased coupling from land to extreme heat cases becomes

widespread over the moist tropics, much of the extratropics,

and especially during summer in high-latitude regions.

Decreased coupling appears over some of the more arid

regions. However, one may assume that gradually increasing

mean temperatures are not as much a factor for assessing

land–atmosphere feedbacks as the changes in variability.

When piControl standard deviations of temperature, sensible

heat flux, and normalized sensible heat flux are used in all time

periods, but anomalies are calculated based on recent climate

norms, a different picture emerges (Figure 8 and

Supplementary Figure S8). Increases in the 90th percentile of

π become quite large across the tropics and monsoon regions as

well as northern Europe during the boreal summer, reflecting

an increase in surface heat flux variability across the region in

tandem with increasing temperature variability

(Supplementary Figures S10, S12). Other regions mostly

indicate a reduction in heat flux variability relative to

piControl norms, suggesting that the land surface is less

involved in the development of temperature extremes.

These conclusions should be considered provisional and

serve mainly as an indicator of the difficulty surrounding the

construction of an interdisciplinary, widely applicable metric,

that is, navigating through the uncertainty presented by a

changing climate and the Earth system processes fostering

these extreme events. For modeling studies, it is rather

difficult to isolate and deduce a posteriori the role of land

surface feedbacks on extremes (e.g., heatwaves and drought)

from experiments that were not specifically designed to isolate

the possible role of the land via specifically constructed sensitivity

analyses. This discontinuity points to the merit and necessity of

targeted multimodel climate change experiments (Seneviratne

et al., 2013; Hurk et al., 2016; Lawrence et al., 2016). However,

with an abundance of subfield-specific model intercomparison

projects (MIPs; over 20 in CMIP6), such specialized sensitivity

studies become undersubscribed and model uncertainty is

amplified.

Projects like GSWP-2 (Dirmeyer et al., 2006), GLACE

(Koster et al., 2004; Koster et al., 2006), GLACE-2 (Koster

et al., 2011), and LUCID (Pitman et al., 2009) established a

model count of about one dozen as an adequate minimum for

global climate studies–a mark that has been difficult to match

with recent specialized MIPs. However, these innovative

strategies must progress beyond the monthly scale analyses

presented here in addition to investigating changes in actual

heatwave events that would require daily model output. Such

data are available for a few CMIP6 models, but the sample

distribution is not large enough to assuage concerns over

model-dependent results. Furthermore, the relatively low

resolution of climate change models may obscure processes

and localized features that could alter these results. Perhaps

for the next round of climate model intercomparisons, MIPs

can be organized that target phenomena of looming societal

concern such as heatwaves and droughts.
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